Comparison of inshore zooplankton and ichthyoplankton populations of the Gulf of Maine*

David W. Townsend

Bigelow Laboratory for Ocean Sciences, McKown Point, West Boothbay Harbor, Maine 04575, USA

ABSTRACT: Zooplankton and ichthyoplankton were sampled in 2 hydrographically different areas on the US Maine coast: Sullivan Harbor in eastern Maine and the Damariscotta estuary in western Maine. Sampling was conducted from late winter to early summer in each area in 1979 and 1980. Phytoplankton chlorophyll concentrations were determined for each area in 1979. Phytoplankton and zooplankton blooms appeared to be coupled and differed in timing between areas in 1979. Timing of peak zooplankton abundances was not appreciably different between areas in 1980, but was earlier in the season than in the previous year. Times of maximum catch rates of dominant larval fish species were closely coupled to plankton dynamics.

INTRODUCTION

Seasonal cycles of zooplankton abundance and species composition in the coastal and offshore waters of the Gulf of Maine have received attention from a number of investigators (Bigelow, 1926; Clarke, 1933, 1934; Redfield, 1939, 1941; Redfield and Beal, 1940; Colton et al., 1962; Sherman, 1965, 1966, 1968, 1970; Sherman and Perkins, 1971). Their findings suggest that the cycle follows that of the phytoplankton with a peak in late spring just after the phytoplankton bloom, although at times the zooplankton reaches maximum biomass during summer (Sherman, 1965, 1966, 1968). The peak in abundance of both phytoplankton and zooplankton occurs earlier in the western Gulf of Maine and spreads gradually to the east with the onset and development of thermal stratification during spring and summer (Bigelow, 1927).

In contrast to coastal and offshore waters, zooplankton of the inshore embayments and estuaries of the Gulf of Maine are known from only a few isolated accounts and the interpretation of differences along the coast is difficult. Willey (1913, 1915) and Legaré and McLellan (1960) reported on the zooplankton of the Passamaquoddy Bay area; Lee (1975) and Lee and McAlice (1979a) studied the Damariscotta River estuary; and McAlice (1973) reported on the Sheepscot River-Montsweag Bay estuarine system (Fig. 1). With the exception of the study by McAlice (1973) the above workers sampled only at monthly or seasonal intervals and used various large mesh nets, hampering intercomparisons between areas.

The ichthyoplankton of the inshore waters of the Gulf of Maine has been documented, but only for estuarine systems and nearby waters in the central area of the Maine coast (Graham and Boyar, 1965; Chenoweth, 1973; Hauser, 1973; Laroche, 1980, 1982; Shaw, 1981; Townsend and Graham, 1981). Studies in

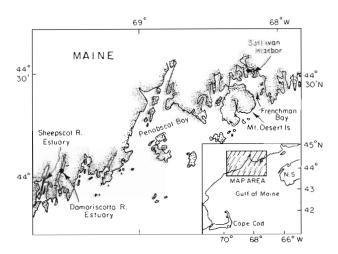


Fig. 1. Map of the 2 sampling stations in the Damariscotta River estuary and Sullivan Harbor, in relation to the US Maine coast and the Gulf of Maine. N. S.: Nova Scotia, Canada

Bigelow Laboratory Contribution No. 82018

each of these estuaries showed that in general the highest catch rates of larval fishes occurred in the spring, which is close to the times of the spring phytoplankton and zooplankton blooms in this region.

This paper presents the results of a comparative study of the abundance and species composition of zooplankton and ichthyoplankton as they relate to hydrography and, in Year 1 of the study, phytoplankton biomass, in 2 inshore areas on the coast of Maine sampled from late winter to early summer during 1979 and 1980. The 2 sample areas, the Damariscotta estuary in western Maine and Sullivan Harbor – an embayment in eastern Maine (Fig. 1) – were chosen to represent the hydrographic variation along the Maine coast from west to east (Townsend, 1981, 1983).

MATERIALS AND METHODS

Field procedures

Weekly ichthyoplankton samples and biweekly, with some weekly, zooplankton samples were collected from January to July in 1979 and January to May in 1980 in both the Damariscotta estuary and Sullivan Harbor. Details of the study areas and sampling

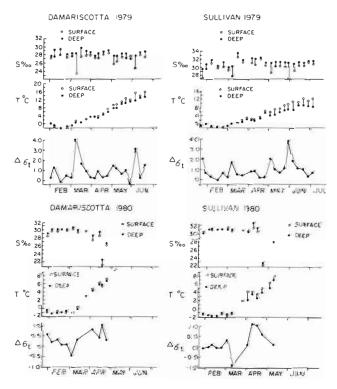


Fig. 2. Surface and deep (deep is 15 m in Sullivan Harbor and 25 m in the Damariscotta estuary) temperatures and salinities, and surface to deep differences in sigma-t for the Damariscotta estuary and Sullivan Harbor, 1979 and 1980

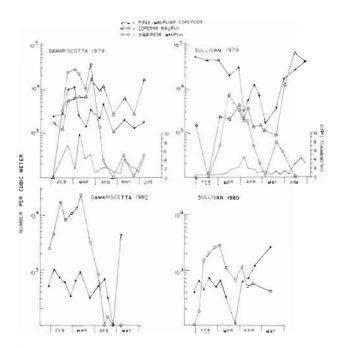


Fig. 3. Abundances of the major zooplankton groups comparable between areas for 1979 and 1980 and chlorophyll *a* for both areas in 1979. Mean values of either 2 or 4 chlorophyll samples are plotted. The 1979 zooplankton samples were collected with 80 μm mesh nets, the 1980 samples with 165 μm mesh nets

methods are given elsewhere (Townsend, 1981, 1983) and are summarized here. A 61 cm diameter bongo net frame was used to sample the larval fishes and a 20 cm diameter bongo was used on the same wire to sample the zooplankton (Posgay and Marak, 1981). The large bongo was fitted with 505 µm mesh nets on each side. In 1979, 80 µm mesh nets were used on the small bongo initially but due to problems with net clogging a 165 µm mesh net was placed on one side of the paired bongo after the first 3 mo of sampling. Only 165 µm mesh nets were used on the small bongo in 1980. A single station was sampled in each area with replicate surface and deep tows taken during midday. Temperatures and salinities were measured with a Beckman RS5-3 field salinometer-thermometer. Chlorophyll samples were taken in 1979 only.

Laboratory procedures

Zooplankton settled volumes were determined for all 20 cm bongo samples by allowing each to settle overnight in a graduated cylinder. Because the main sources of plankton sampling variability are generally between net tows, both between and within stations, and the least variability is caused by subsampling in the laboratory (Platt et al., 1970; Lee and McAlice, 1979b), the zooplankton species composition and abundance determinations were made by pooling the replicate samples. The 20 cm bongo samples of the same net mesh size for a particular date and area were combined and the pooled sample was diluted to 10 to 20 times the settled volume. All zooplankton in a 1 ml aliquot were counted and identified to species, when possible, in a Sedgwick-Rafter cell. All fish larvae from one side of the preserved 61 cm bongo were identified and counted. The chlorophyll *a* determinations were made fluorometrically by the method of Yentsch and Menzel (1963) using the equations of Lorenzen (1966).

RESULTS

Hydrography

The vertical stability of the water column in each area in 1979 was apparently controlled more by salinity stratification than by temperature (Fig. 2). There were marked pulses in increased stability (top to bottom sigma-t differences) in the Damariscotta estuary in early March and early June, and several smaller pulses in Sullivan Harbor in late January, early March, early May, and a large peak in early June of that year. In

Table 1. Estimated numbers	of zooplankton or	rganisms per cubic	meter, Damariscotta	River estuary,	1979. Samples were
	collected w	with 80 µm mesh (No	o. 20) plankton nets		

Таха						53	mple da	to					
T dixa	1	15	23	2	8	16	22	6	11	25	9	23	6
	Feb	Feb	Feb	2 Mar	8 Mar	Mar	22 Mar	Apr	Apr	25 Apr	9 May	23 May	Jun
Phylum Protozoa				39-39-53 									
Class Rhizopoda													
Unidentified foraminiferans	67			208		49	235	31					
Class Ciliata				5208	10500	12097	62832	3047	1700				
<i>Tintinnopsis</i> sp. Unidentified tintinnids				208	12322	12097	02832	3047	1700				
Phylum Aschelminthes				208									
Class Nematoda													
Unidentified nematodes	67	45		416	180	49			34			70	2124
Class Rotifera													
Synchaeta sp.	89	23		416	361	12487	33529	1269	1350	1953	3868	94	432
Trichocerca sp.						49		31					
Keratella sp.						117			33	31	33		
Phylum Mollusca													
Class Gastropoda													
Littorina sp. eggs									17				
Unidentified gastropod larvae	45	23		208				31	67		66	23	72
Class Bivalvia	22												1000
Unidentified straight-hinge larvae Phylum Annelida	22											47	4968
Class Polychaeta													
Unidentified trochophore larvae				625	630	49	235	285	1650	6449	4229	2894	468
Unidentified abereger larvae				208	050	45	235	205	1050	31	196	1458	432
Phylum Arthropoda				200					17	51	150	1450	432
Class Crustacea													
Subclass Cirripedia													
Cirripede naupln	89	3307	24342	27500	22972	10292	39529	1492	250	62	327	117	324
Cirripede cyprids								984	233				
Subclass Copepoda													
Acartia longiremis (Lilljeborg) adults	291	638	800	869	360	341	235	158	2000	62	295	367	432
Acartia sp. copepodites	45	91				146	470	857	966	620	786	705	1152
Acartia sp. nauplii	985	729	2971	4791	3243	3853	12588	6000	7250	1426	5081	1647	7668
Calanus finmarchicus (Gunnerus) adults	22												
Centropages hamatus (Lilljeborg) nauplii									516	124	229	23	288
Eurytemora herdmani Thompson and Scott adults	45								17			47	36
E. herdmani copepodites						075	0.50		216	62	327	47	
E. herdmani nauphi Microsofella portage (Recele) edulta and compared to	1422	1573	8800	10000	1002	975	352	1777	783	775	360	141	216
Microsetella norvegica (Boeck) adults and copepodites M. norvegica nauplii	1432	13/3	8800	10000	1982	878 98	2235 117	253 190	933 200	341	163 32	47	288
Oithona similis Claus adults and copepodites	22	182	457	208		98 49	117	31	200		32	47	200
O. similis nauplii	156	45	114	200	270	43	117	21	67		55	70	
Pseudocalanus minutus (Krover) adults	470	23	114	208	90		117	31	0/		66	94	
P. minutus copepodites	89	68	114	200	90	146	470	380	133	15	33	117	72
P. minutus nauplii	380	205	114	208		195	235	63	150	46	33	23	-
Temora longicornis (Muller) adults	22	136		208	90			94	67		98	70	36
T. longicornis copepodites								539	400	62	327		180
T. longicornis nauplii	134	228	1828	1250	2702	1414	3647	1333	1083	434	426	494	360
Unid. Harpacticoid adults and copepodites	156	23			90				34	31	33	23	72
Unid. Harpacticoid nauplii						149	117		34	31	66	329	1836
Unid. copepod nauplii	45				361	243	352	127	133	31			72
Unid. copepod eggs	67	68	114			146	588	31	366	124	33		
Phylum Chordata													
Class Larvacea													
Oikopleura sp.												47	
Other – Unid. invertebrate eggs	268	114	800	1250	270	946	235	158	167	31	262		936
Hansen's nauplii	208	114	800	208	270	940	235	128	107	51	202		930
ransen s naupin				208									

each instance, the peaks in stability were the result of influxes of low salinity surface water. These events were synchronous between areas and most likely represented maxima in freshwater runoff from land into the systems. The average salinities in 1979 were persistently lower in the Damariscotta than in Sullivan. The water temperatures were similar between areas until early March when warming proceeded more rapidly in the Damariscotta; the difference in water temperature was about 1 to 1.5 °C in March. either area until March (Fig. 2). It was late March when the water column began to stabilize in the Damariscotta estuary and early April in Sullivan. The differences between surface and deep salinities were very slight in each area, with no significant fresh water additions until late April. However, these salinity differences were still more important than temperature in stabilizing the water column. The water temperatures in the Damariscotta estuary were persistently higher than those in Sullivan Harbor throughout the sampling period.

Table 2. Estimated numbers of zooplankton organisms per m³, Sullivan Harbor, 1979. Samples were collected with 80 μm mesh

(No. 20) plankton nets

Taxa Sample date Jan Feb Mar Mar May Mar Арг May May Jun Jun Apr Apr Apr Phylum Protozoa Class Rhizopoda Unidentified foraminiferans Class Ciliata Unidentified tintinnids Phylum Aschelminthes Class Nematoda Unidentified nematodes Class Rotifera 2526 12615 Synchaeta sp Trichocerca sp Phylum Mollusca Class Gastropoda Littorina sp. eggs Unidentified gastropod larvae Class Bivalvia Unidentified straight-hinge larvae 4571 18315 Phylum Annelida Class Polychaeta Unidentified trochophore larvae Unidentified seteger larvae Phylum Arthropoda Class Crustacea Subclass Branchiopoda Evadne nordmani Loven Subclass Cirripedia Cirripede nauplu Cirripede cyprids Subclass Copepoda Acartia longiremis (Lilljeborg) adults Acartia sp. copepodites Acartia sp. nauplii Calanus finmarchicus (Gunnerus) nauplii Eurytemora herdmani Thompson and Scott nauplii Microsetella norvegica (Boeck) adults and copepodites 51588 20274 32581 3281 20842 35692 M. norvegica nauplu M. norvegica eggs Othona similis Claus adults and copepodites O. similis nauplii Pseudocalanus minutus (Kroyer) adults P. minutus copepodites P. minutus nauplu Temora longicornis (Muller) adults T. longicornis copepodites T longicornis nauplii Unid. Harpacticoid adults and copepodites Unid. Harpacticoid nauplii Unid Copepod nauplii Subclass Decapoda Hvas sp. zoea Phylum Chordata Class Larvacea Fritillaria borealis Lohmann Other Unid. invertebrate eggs

In 1980, there was very little vertical stability in

Chlorophyll

Chlorophyll *a* concentrations in 1979 reached peaks in the Damariscotta estuary in late February and early to mid-March followed by lower values and a third peak in May (Fig. 3). There were 2 peaks in chlorophyll in Sullivan Harbor, in early April and June. The chlorophyll levels in Sullivan Harbor were generally lower than the Damariscotta.

Zooplankton

The estimated abundances and species composition of zooplankton are summarized in Tables 1 to 4. The tintinnid, *Tintinnopsis* sp. had the highest peak abundance in the Damariscotta estuary in 1979, reaching its peak abundance on 22 March, as did the other 2 abundant taxa, the rotifer *Synchaeta* sp. and cirripede nauplii. The species composition in Sullivan Harbor

Table 3. Estimated numbers of zooplankton organisms per m³. Damariscotta River estuary, 1980. Samples were collected with 165 µm mesh plankton nets

Sample date	
29 4 12 19 26 4 11 25 4 14 18 Jan Feb Feb Feb Mar Mar Mar Apr Apr Apr	25 6 Apr May
27 6	2
21	
7 6	
30	
14 33 7	15 6
30 102 66 105	5 4
16 38 7	6
15 21 6	16
2506 4789 17574 8344 11363 13713 24117 3285 856 22 154	
33 1916 600 37 49	
	2
g) adults 223 356 321 229 61 138 131 45 23 102 43	83
140 348 302 158 122 385 262 274 358 249 136	218
8 38 43 55 65 23 7 29 12	114
s) adults 14 55	
45 6	
j) adults	6
	6
and Scott adults 25 25 46 65 7 22 37	14
19	33
55 65	8
copepodites 16 124 46 164 29 22	2
Is and copepodites 28	
adults 58 49 19 15 55 164	4
24 17 19 15 27 98 7	
8 38 30 131 91 29 7 18	
lts 66 66 75 72 15 65 7 22 12	16
88 161 49	87
14 46 7 6	31
mand Scott) adults 17 14 27 7	
ppepodites 19 57 117 42	5 4
43 30 18	10 2
8	4
14	5
	~
8	
14 6	
14 6 8 14 rvae and chaetognaths were visually present in the raw samples but were not adequately subsampled by the Ste	

in 1979 was different from the Damariscotta (Tables 1 and 2). The dominant species in Sullivan was the harpacticoid copepod *Microsetella norvegica* which was at peak abundance on the first sample date, 31 January.

Comparisons of the 1979 and 1980 zooplankton results are complicated by the fact that most of the smaller organisms were undersampled by the 165 μ m nets used in 1980. A comparison of the 165 μ m and 80

µm mesh nets is given in Table 5. In particular, *Tintin-nopsis* sp., *Synchaeta* sp., polychaete trochophore larvae, adult and copepodid *M. norvegica*, and all copepod nauplii were undersampled in 1980, whereas the adult and copepodid stages of most copepods and cirripede nauplii were sampled more representatively. The dominant zooplankters in each area in 1980 were cirripede nauplii (Tables 3 and 4) which reached peak abundances earlier than the previous year.

Table 4. Estimated numbers of zooplankton organisms per m³. Sullivan Harbor, 1980. Samples were collected with 165 µm mesh plankton nets

_												
Taxa		112				-	le date		-			
	28 Jan	5 Feb	11 Feb	18 Feb	25 Feb	3 Mar	10 Mar	26 Mar	3 Apr	10 Apr	17 Apr	11 May
Phylum Protozoa								_				_
Class Ciliata												
Unid. tintinnids	8											
Class Rhizopoda							0	0.5				
Unid. foraminiferans Phylum Aschelminthes	8			110	48	28	8	25	17	17	48	16
Class Nematoda												
Unid. nematodes	8		10	24	8	9	23	8		17		32
Class Rotifera					-	•		-				
Synchaeta sp.	8			86			8			9		275
Phylum Mollusca												
Class Gastropoda												
Littorina sp. eggs										388	95	210
Unid. gastropod larvae	16		20	37	56	104	31	8		9		97
Class Bivalvia					~	0				25		1.6.4
Unid. straight-hinge larvae Phylum Annelida					8	8				35		161
Class Polychaeta												
Unid. trochophore larvae						19	31	8	26	17	35	
Unid. seteger larvae						19	5.	Ŭ	8	1,	00	
Phylum Arthropoda												
Class Crustacea												
Subclass Branchiopoda												
Evadne nordmani Loven												32
Subclass Cimpedia												
Cirripede nauplii		187	1500	2006	2862	2880	1138	666	1164	502	584	420
Cirripede cyprids						9		77	191	405	48	16
Subclass Copepoda Acartia clausi Giesbrecht adults											12	
Acartia longiremis (Lilljeborg) adults	66	8	30	12			31	8	147	141	346	1116
Acartia sp. copepodites	8	24	20	12		9	17	25	226	326	340	647
Acartia sp. copepounes Acartia sp. nauplin	0	24	20		8	19	17	8	34	26	83	178
Calanus finmarchicus (Gunnerus) adults	8			12				Ť			24	1.0
Eurytemora herdmani Thompson and Scott adults	16	8						8		35		
E. herdmani copepodites								8		26	12	
E. herdmani nauplii									8			
Microsetella norvegica (Boeck) adults and copepodites	8	33	30	98	40	38				88	36	81
Oithona similis Claus adults and copepodites	223	464	230	344	233	390	147		113	44	24	194
O. simulis nauplii				37			8			9		
Pseudocalanus minutus (Kroyer) adults	33	81	70	123	104	85	46		26	9	48	291
P. minutus copepodites	8 8	16 57	40	110 172	112 88	152	70 70	42	43	44 26	203	194
P. minutus nauplii Temora longicornis (Muller) adults	8	57		172	88	152	70	42	43 17	26 35	36 60	178
T. longicornis copepodites			10	12					26	35	108	81
T. longicornis nauplii			10	12		9			20	3	24	01
Tortanus discaudatus (Thompson and Scott) adults	8											48
T. discaudatus copepodites	8											
Unid. Harpacticoid adults and copepodites	16	8		24	16		23	17		26	24	16
Unid. Harpacticoid nauplii								17				
Unid. copepod adults	8	16	10									
Unid. copepod eggs										26		
hylum Echinodermata												
Unid. pluteus larvae												97
hylum Chordata												
Class Larvacea									~	~		051
Fritillarıa borealis Lohmann Dther –									8	9		954
Unid. invertebrate eggs				184	24		8	8	8			
ond, inveneorate eggs				104	24		8	0	8			

Ichthyoplankton

A total of 24 species of larval fishes were caught during this study. The catch rates and seasonalities for all species caught in both sample areas are given in Tables 6 to 9. The dominant species for both the Damariscotta estuary and Sullivan Harbor was *Pholis* gunnellus. Other dominant species occurring in each area included 3 cottid congeners, *Myoxocephalus scorpius, M. aenaeus* and *M. octodecempspinosus*, and the stichaeid *Lumpenus lumpretaeformis*. These results, for the Damariscotta, are similar to those reported previously for this area (Graham and Boyar, 1965; Chenoweth, 1973; Hauser, 1973; Laroche, 1980, 1982; Shaw, 1981). A complete discussion of the ecology of the cottid larvae is given by Laroche (1982).

Although differing somewhat in relative abundances, the late winter larval fish faunas in Sullivan Harbor and the Damariscotta estuary were quite similar. However, they differed considerably in species composition later in the season. In particular, *Liparis atlanticus* and *Ammodytes* sp. larvae were abundant in Sullivan Harbor, but were only poorly represented in the Damariscotta. Conversely, *Osmerus mordax* and fall-spawned *Clupea harengus* larvae were abundant in the Damariscotta and rare in Sullivan Harbor. There are no previously published accounts of the fish larvae from Sullivan Harbor or waters nearby with which to

Table 5. Comparison of counts and abundance estimates of zooplankton sampled in the Damariscotta River estuary, 11 April 1979, with a 20 cm Bongo net equipped with an 80 µm mesh net on the port side and a 165 µm mesh net on the starboard side. Two surface and deep 10 min tows were taken and the samples pooled. The No. 20 net sample was diluted to 2000 ml and the No. 10 net sample was diluted to 1000 ml. A 1 ml aliquot from each was counted. Organisms were divided into rough size categories

Taxon	No. 2	0 Net	No. 10) Net
	Raw count	No. m ⁻³	Raw count	No. m ⁻³
Smaller organisms				
Keratella sp.	8	133	-97	-
<i>Tintinnopsis</i> sp.	102	1700	2	14
Synchaeta sp.	81	1350	1	7
Unid. gastropod larvae	4	67	_	-
Unid. polychaete trochopores	99	1650	13	96
Acartia sp. nauplii	435	7250	14	103
Eurytemora herdmani nauplii	47	783	1	7
Centropages hamatus nauplii	31	516	-	-
Microsetella norvegica nauplii	12	200	-	-
M. norvegica adults and copepodites	56	933	1	7
Oithona similis nauplii	4	67	_	-
Pseudocalanus minutus nauplii	9	150	2	14
Temora longicornis nauplii	65	1083	_	_
Unid. harpacticoid nauplii	2	34	-	
Unid. copepod nauplii	8	133	-	_
Unid. copepod eggs	22	366	_	_
Hansen's nauplii	-	_	3	22
Unid. invertebrate eggs	10	167	-	-
Larger organisms				
Unid. polychaete setegers	1	17	4	29
Unid. nematodes	2	34	1	7
Littorina sp. eggs	1	17	6	44
Acartia longiremis adults	12	200	32	235
Acartia sp. copepodites	58	966	102	750
E. herdmani adults	1	17	3	22
E. herdmani copepodites	13	216	37	272
O. similis adults and copepodites	3	50	15	110
P. minutus copepodites	8	133	1	7
T. longicornis adults	4	67	8	59
T. longicornis copepodites	24	400	36	264
Unid. Harpacticoid adults and copepodites	2	34	3	22
Cirripede nauplii	15	250	38	279
Cirripede cyprids	14	233	38	279
Volume filtered	119.8	3 m ³	135.9) m ³
Settled volume	113.0	cm	82	cm

	_		ns								Sp	ecies							ST				
Sample date	Ammodytes sp.	Anguilla rostrata	Aspidophoroides monopterygius	Clupea harengus	Cryptacanthades maculatus	Hemitripterus americanus	Liopsetta putnamı	Liparis atlanticus	L. coheni	Lumpenus lumpretaeformis	Metudia menidia	Microgadus tomcod	Myoxocephalus aenaeus	M octodecemspinosus	M scorpius	Osmerus mordax	Pholis gunnellus	Pollachius virens	Pseudopleuronectes americanus	Syngnathus fuscus	Triglops murrayi	Ulvaria subbifurcata	Total
1 Feb				0.17					0.43	1.45				0.26			1.12	0.09		_			3.52
7 Feb 15 Feb				0.10 0.17					0.09	0.82 0.81			0.27 0.47	0.92 0.62	0.19 0.90		0.91 3.88						3.21 6.93
13 Feb 23 Feb				0.17	0.09				0.09	0.05			0.47	0.62	2.22		3.35	0.09					6.76
2 Mar				0.47	0.18				0.10	2.94			1.33	3.70	12.43		17.65	0.18			0.10		39.07
8 Mar	0.16			0.78	0.08				0.26	2.30		0.09	5.96	4.10	13.83		44.37	0.08					72.01
16 Mar	0.08			1.69	2.95	0.25	0.33		1.92	3.69			6.33	6.07	25.66		54.64	1.52			0.08		105.22
22 Mar				8.55	0.73				0.30	2.83		0.08	12.83	6.56	17.39		46.24	4.04					100.13
30 Mar				2.91	1.24	0.34	0.36		0.09	0.78		0.19	5.16	0.68	0.67		22.32	3.36					38.59
6 Apr				2.59	0.08	0.08	0.73			0.08			6.40	0.09		0.08	18.38	0.17					29.34
11 Apr		0.17	0.00	4.28	0.08								0.33	0.09	0.08		5.68	2.19					13.41
18 Apr 25 Apr		0.10 0.09	0.56 0.16	4.58 1.75			0.59	0.10		0.19 0.09			0.75 1.54				6.00 14.80	3.71 0.34	1.38			0.18	16.70 21.92
4 May		0.09	0.10	1.73	0.08		0.59			0.09			0.37			1.40	2.32	0.34	1.38			20.52	28.00
9 May	0.07			1.43	0.00		0.10						0.37			6.77	1.14	0.07	0.94			7.07	17.42
18 May				2.10												19.25		4.57	4.62			10.11	33.99
23 May								0.09								21.96			2.96			0.67	25.69
30 May								0.17								29.72			5.42			1.40	36.72
6 Jun											0.18					13.42	0.18		1.97			0.54	16.28
13 Jun																1.08			0.10			0.18	1.35
20 Jun																0.16			0.16	0.16			0.48

Table 6. Abundances and species composition of fish larvae (expressed as number of larvae per 100 m³), Damariscotta River estuary, 1979

Table 7. Abundances and species composition of fish larvae (expressed as number of larvae per 100 m³), Sullivan Harbor, 1979

Sample date	Ammodytes sp.	Anguilla rostrata	Aspidophoroides monopterygius	Clupea harengus	Cryptacanthades maculatus	Hemitrpterus americanus	Hippoglossoides platessoides	Liopsetta putnami	Liparis allanticus	L. coheni	Lumpenus lumpretaeformis dG	s Cyclopterus lumpus	Microgadus tomcod	Myoxocephalus aenaeus	M. octodecemspinosus	M. scorptus	Osmerus mordax	Pholis gurnellus	Pseudopleuronectes amencanus	Triglops murcayn	Ulvaria subbifurcata	Total
24 Jan											0.96				0.14	0.43						1.52
31 Jan 8 Feb					0.09 0.18					0.08	1.68 1.37				0.26 0.50	0.08		0.26				2.03 2.48
16 Feb					0.18					0.08	2.06				0.30	0.00		0.26				2.48
22 Feb					0.09					0.10	4.82				1.52	0.10						6.62
1 Mar					0.08						4.72				0.84	2.31		1.22		0.10		9.27
7 Mar	0.08				0.33	0.08				0.85	4.40			0.19	6.70	4.68		5.36				22.68
15 Mar	.46			0.19	0.94					0.44	12.05			0 26	9.78	5.13		24.10				53.35
23 Mar	35.38				2.79	0.70				1.61	1.03		0.61	9.83	4.02	9.83		77.49		0.08		143.38
29 Mar	1.13			0.49	4.05	0.33		0.40		0.32	3.12			1.15	0.65	0.07		22.79				34.68
	19.02 19.08			0.63	1.03 0.57	0.18 0.43		0.18 0.09	0.34	1.95 1.47	2.08 2.05		0 09	23 66 20.64	0.89 0.76	0.87 1.51		45.81 48 73		0.09		95.66 96.45
19 Apr	19.60		0.09	1.83	0.57	0.43		0.09	1.94	0.71	2.05		0.09	20.64	0.31	3.96		4673		0.09		96.45 109.23
	13.04		0.00	0.84		0.56		0 19	3.73	0.18	2.00			7 04	0.09	0.54		9.47			0.10	35.77
3 May	9.98			1.62		0.19			19.46		0.09			0.97		0 10		1.53	0.30		0.09	34.34
10 May	2.19	0.08		2.24		0.53			35.13					0.55			1 1 5	1.10	0.87			43.83
17 May	2.74		0.09						24.45					0.11			0.27	0.17	2.51		0.36	27.69
24 May						0.09	0.10		7.36			0.09					048		1.69		0.47	10.29
31 May	0.08						0.09		8.35								0.18		1.43		1.07	11.20
7 Jun									19.06			0.09					0.09		2.12		0.98	22.35
14 Jun 21 Jun									9.35 0.77								0.17		7.80		1.71 0.78	19.23 2.23
21 Jun 28 Jun									1.08										0.69 1.45		0.78 3.64	2.23 6.17
5 Jul									0.20			0.09							1.45		0.20	1.85

compare my results. The overall abundances of the dominant late winter species increased earlier in the Damariscotta than in Sullivan Harbor by 1 to 3 weeks. The peak abundances of these species, like the zooplankton, occurred earlier in 1980 than 1979 in each area.

DISCUSSION

The timing of the late winter—early spring phytoplankton bloom in 1979 in the Damariscotta estuary was similar to that reported by Cura (1981) for 1978. He reported that the chlorophyll levels were generally low

Table 8. Abundances and species composition of fish larvae (expressed as number of larvae per 100 m ³), Damariscotta River
estuary, 1980

Sample date	Ammodytes sp.	Anguilla rostrata	Aspidophoroides monopterygius	Clupea harengus	Cryptacanthodes maculatus	Hemitripterus americanus	Liopsetta putnami	Lipans coheni	Species Lumpenus lumpretaeformis	Myoxocephalus aenaeus	M. octodecemspinosus	M. scorpius	Osmerus mordax	Pholis gunnellus	Pollachius virens	Pseudopleuronectes americanus	Ulvaria subbifurcata	Total
29 Jan				0.18				0.18	0.88	2.36	1.57			3.95				9.12
4 Feb				0.18		0.10		0.00	0.53	1.24	1.41			6.50				6.21
12 Feb 19 Feb				0.11 0.29	0.00	0.19		0.09	0.88 1.39	2.51 3.10	3.07	1.31 2.79	0.10	12.03 20.66	0.08			21.16 31.92
26 Feb				0.29	0.86 0.99	0.16		0.50	1.39	11.14	2.66 4.40	12.46	0.10	42.44	0.08			74.22
4 Mar				0.33	0.35	0.10		0.18	0.43	6.35	0.69	16.87		37.57	0.08			62.51
11 Mar		0.19		0.19	1.03			0.10	0.45	8.65	2.57	14.96		29.78	0.00			57.37
25 Mar	1.06	0.35		16.25	1.00			0.87	0.17	19.00	2.28	13.91		34.88	1.75			90.52
4 Apr	1.16	**		34.22		0.59			0.14	1.44	0.14	1.31		49.31	0.29			88.60
11 Apr	0.33	0.17		6.31		0.18				0.74		0.17		12.13	1.01			21.04
14 Apr				12.51		0.16	0.32		0.08	0.74				3.31	0.08			17.21
18 Apr	0.26		0.17	8.73			0.09			0.94	0.08			7.77	0.08			18.13
25 Apr	0.08		0.09	2.28			0.09			0.18				1.02			0.16	3.89
6 May				0.17									1.20			2.58	5.51	9.47

Table 9. Abundances and species composition of fish larvae (expressed as number of larvae per 100 m³), Sullivan Harbor, 1980

			sni						Sp	ecies							sn		
Sample date	Ammodytes sp.	Anguilla rostrata	Aspidophoroides monoplerygius	Clupea harengus	Cryptacanthodes maculatus	Hemitripterus americanus	Liopsetta putnami	Liparis atlanticus	L. coheni	Lumpenus lumpretaeformis	Microgadus tomcod	Myoxocephalus aenaeus	M. octodecemspinosus	M. scorpius	Pholis gunnellus	Pollachius virens	Pseudopleuronectes americanus	Ulvaria subbifurcata	Total
28 Jan									0.09	2.93		0.09	0.56		2.66				6.33
5 Feb					0.18					0.63			0.35	0.09					1.25
11 Feb					0.10				0.10	0.48		0.10	0.10		1.19				2.06
18 Feb					0.17				0.09	0.62			1.32		0.27				2.47
25 Feb					0.94				80.0	1.29		0.10	4.46	0.53	15.70				23.09
3 Mar	0.09				0.41				0.24	0.35	0.00	0.26	1.89	1.05	4.45				8.74
10 Mar 26 Mar	10.66				1.50 0.55	1.06			0.88 1.10	0.52	0.09	0.97 1.81	6.48 4.05	5.81 1.96	20.51 91.90				36.84 113.09
3 Apr	3.85	0.09		0.19	1.76	0.46			1.40	1.09	0.09	1.55	3.54	2.75	91.90 67.71				84.48
10 Apr	12.07	0.00		0.33	0.23	0.40	0.61	0.17	0.57	0.09	0.33	10.71	0.25	2.44	41.16	0.09			70.05
17 Apr	3.35			0.95	0.20	0.04	0.01	9.17	0.24	0.00	0.00	0.71	0.20	0.08	6.68	0.05			12.02
24 Apr	11.23		0.27	1.40		0.10	0.10	1.31	0.38			2.49	0.10	0.00	3.82				21.21
5 May	11.29		0.09	0.08		0.08	0.15	1.99							0.83	0.15	0.30		14.96
11 May	6.79							15.12				0.62			0.62		1.54	0.31	24.99

in February (0.7 to $1.0 \,\mu gl^{-1}$) and reached a peak on 20 March (3.6 μ gl⁻¹). He noted that the bloom that year occurred within 7 d after the average in situ light intensity exceeded 40 $ly d^{-1}$, and that it was not triggered by a sudden influx of nutrients. Hitchcock and Smayda (1977) reported a similar response in Narragansett Bay to this apparently critical light intensity. This phenomenon may explain the difference in timing of the early phytoplankton blooms between areas in my study. The late February–early March bloom in the Damariscotta in 1979 occurred before any marked influx of freshwater or increase in vertical stability and began as the water temperature was climbing above about 1 °C. In Sullivan Harbor, the late March-early April bloom also occurred as the water temperature increased above 1 °C and did not correspond to any marked increase in vertical stability. It is quite possible that if the 1 to 1.5 C° change in temperature were of only minor importance, that differences in in situ light intensities may have controlled the timing of these blooms. Although not measured in this study, extinction coefficients might have been greater in Sullivan Harbor where, in addition to being shallower than the Damariscotta, the mean tidal range is about 0.5 m greater in Sullivan (3.2 m vs 2.8 m). It could be argued that tidal mixing resulted in a higher suspended particulate load in Sullivan Harbor, and that a greater solar elevation later in the spring was required to give a critical in situ light intensity for a phytoplankton bloom. Bigelow et al. (1940) also reported that the peak in phytoplankton in 'the coastal waters near Mt. Desert Island', which is at the mouth of Frenchman Bay and Sullivan Harbor, generally lags behind the western Gulf of Maine.

The times of peak abundances of the major groups of zooplankton common to both sample areas, i.e. postnaupliar copepods, copepod nauplii and cirripede nauplii, are shown in Fig. 3. It appears that the abundance cycles of these groups in 1979 in the Damariscotta were coupled to that of the phytoplankton. Each group began to increase in numbers in late February, commensurate with rising chlorophyll concentrations. The copepod nauplii and cirripede nauplii, as well as Synchaeta sp. and Tintinnopsis sp. (Table 1), reached maximal abundances at the end of the phytoplankton bloom while the post-naupliar copepods peaked in early March. The abundance curve of cirripede nauplii in 1980 in the Damariscotta was similar in shape to the previous year but occurred earlier in the season, while the abundances of post-naupliar copepods were lower than in the previous year and fluctuated before rising abruptly on the last sample date. Lee (1975) reported that the copepods in the Damariscotta estuary had 2 abundance peaks in 1972, one in early June and the other in August and September, which more closely

resembles my results in 1980 than in 1979. The postnaupliar copepod maximum occurred much earlier in 1979 than in 1980 in the Damariscotta, suggesting that year to year variability is quite significant. The abundances of the major groups of zooplankton in Sullivan Harbor in 1979 were relatively high before the phytoplankton bloom there, and were much lower than in the Damariscotta. It is quite possible, however, that grazing pressure early in the season in Sullivan delayed the time of and suppressed the phytoplankton bloom.

The post-naupliar copepods in Sullivan Harbor in 1979 were dominated by a single species, Microsetella norvegica, which was most abundant on the first sample date (Table 2). The abundance of this species reached its lowest value on 3 May, but began to increase again until the last sample date on 28 June. The numbers of M. norvegica nauplii began to increase in late April. These results are consistent with those of Fish and Johnson (1937) who reported that this species 'swarmed' in Frenchman Bay in July and August of 1930 and outnumbered all other zooplankton species combined. Fish (1955) noted that spawning of M. norvegica in the inner Gulf of Maine began during April in 1932, and that propagation reached its peak in July and early August. He reported that there was a progressive delay in spawning to the eastward and that by September propagation had ceased in the entire Gulf in both 1931 and 1932. It appears from my results that spawning of *M. norvegica* can occur later than September or that the development of the young during summer and fall is sufficiently slow to produce a large population of adults and copepodites in winter. The presence of eggs throughout the 1979 sampling period in my study would suggest that spawning can occur during much of the year. The abundance of this species in 1980 could not be adequately assessed because of the larger mesh nets used that year.

As in Damariscotta estuary, cirripede nauplii in Sullivan Harbor appeared earlier in 1980 than in 1979. The late season increase in post-naupliar copepods also occurred earlier in 1980. Although it is commonly accepted that the seasonal cycles of zooplankton and phytoplankton are strongly linked (Cushing, 1959), it has been demonstrated only rarely (i.e. Toner, 1981). The abundances of zooplankton in my study appeared to be strongly linked to the phytoplankton in 1979 in the Damariscotta estuary but less so in Sullivan Harbor. Rather, the zooplankton preceded the phytoplankton peak in Sullivan that year. In addition, the timing of peak abundances of zooplankton in each area in 1980 was earlier than the previous year. This was most obvious for the abundant cirripede nauplii. The release of these barnacle nauplii in the spring is usually synchronized with the phytoplankton bloom (Barnes,

1962), and indeed this appeared to be the case in the Damariscotta in 1979, but they preceded the bloom in Sullivan Harbor. Thus, the earlier appearance of these nauplii in 1980 does not necessarily indicate that the phytoplankton bloom that year was also earlier.

The times of peak abundances of the dominant larval fish species appeared to be coupled to the spring plankton blooms. In 1979 the rises in abundance of the dominant larval fish species occurred 1 to 3 wk earlier in the Damariscotta estuary than in Sullivan Harbor, as did the zooplankton. Also, like the zooplankton, the rises in abundance of the fish larvae occurred earlier in each sample area in 1980 than the previous year. A causative link between the zooplankton abundances and larval fish abundances seems likely. This was examined closely for Pholis gunnellus larvae (Townsend, 1983) whose survival and growth appeared to depend upon the dynamics of its planktonic food. The relation in time between the abundances of the dominant fish larvae and the plankton biomass is shown in Fig. 4 for 1979 (1980 sampling

DAMARISCOTTA, 1979

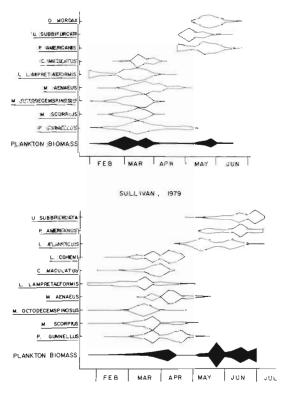


Fig. 4. Graphical representation of relative abundances of the dominant fish larvae in relation to plankton biomass for Damariscotta estuary and Sullivan Harbor, 1979. The widths of each species abundance plot is relative to itself, i.e. the widest portion indicates the time that species reached maximum abundance (Tables 1 to 4). Plankton biomass equals the settled volume biomass estimates from 80 µm mesh 20 cm bongo samples ended early and these results were not plotted). These data show that the late-winter early-summer larval fish assemblages occurred in 2 groups in both Damariscotta estuary and Sullivan Harbor, and each group corresponded to distinct pulses in plankton biomass.

Acknowledgements. This work was supported in part by an NSF Research Initiation and Support Grant to the Migratory Research Institute of the University of Maine at Orono, and a grant from the National Marine Fisheries Service. Much of this work was conducted while at the Department of Oceanography, University of Maine, Ira C. Darling Center, Walpole, Maine. I thank M. Dunn, D. Hodges, R. Schnell and L. Palmer for assistance in the lab and in the field.

I thank Drs. B. J. McAlice, J. J. Graham and H. H. DeWitt for many hours of thoughtful discussion. Also, thanks to Peg Colby and Pat Oathout for typing the manuscript and Jim Rollins for drafting the figures.

LITERATURE CITED

- Barnes, H. (1962). Note on variations in the release of nauplii of *Balanus balanoides* with special reference to the spring diatom outburst. Crustaceana 4: 118–122
- Bigelow, H. B. (1926). Plankton of the offshore waters of the Gulf of Maine. Bull. U. S. Bur Fish. 40: 1–509
- Bigelow, H. B. (1927). Physical oceanography of the Gulf of Maine. Bull. U. S. Bur. Fish. 40: 511–1027
- Bigelow, H. B., Lillick, L. C., Sears, M. (1940). Phytoplankton and planktonic protozoa of the offshore waters of the Gulf of Maine. Part I. Numerical distribution. Trans. Am. Philos. Soc. 21: 149–191
- Chenoweth, S. B. (1973). Fish larvae of the estuaries and coast of central Maine. Fish. Bull. U. S. 71: 105–113
- Clarke, G. L. (1933). Diurnal migration of plankton in the Gulf of Maine and its correlation with changes in submarine irradiation. Biol. Bull. mar. biol. Lab., Woods Hole 65: 402–436
- Clarke, G. L. (1934). Further observations on the diurnal migration of copepods in the Gulf of Maine. Biol. Bull. mar. biol. Lab., Woods Hole 67: 432–455
- Colton, J. B., Jr., Temple, R. F., Honey, K. A. (1962). The occurrence of oceanic copepods in the Gulf of Maine-Georges Bank area. Ecology 43: 166–171
- Cura, J. (1981). Physical and biological factors affecting phytoplankton growth and seasonal succession in the Damariscotta River estuary. Ph. D. thesis, University of Maine
- Cushing, D. H. (1959). The seasonal variation in oceanic production as a problem in population dynamics. J. Cons. 23: 178–188
- Fish, C. J. (1955). Observations on the biology of *Microsetella* norvegica. Pap. mar. Biol. Oceanogr., Deep Sea Res. 3 (Suppl.): 242–249
- Fish, C. J., Johnson, M. W. (1937). The biology of the zooplankton population in the Bay of Fundy and Gulf of Maine, with special reference to production and distribution. J. Biol. Bd Can. 3: 189–322
- Graham, J. J., Boyar, H. C. (1965). Ecology of herring larvae in the coastal waters of Maine. ICNAF Spec. Publ. 6: 625–634
- Hauser, J. W. (1973). Larval fish ecology of the Sheepscot River-Montsweag Bay estuary, Maine. Ph. D. thesis, University of Maine

- Hitchcock, G. L., Smayda, T. H. (1977). The importance of light in the initiation of the 1972–1973 winter/spring diatom bloom in Narragansett Bay. Limnol. Oceanogr. 22: 126–131
- Laroche, J. L. (1980). Larval and juvenile abundance, distribution, and larval food habits of the larvae of five species of sculpins (Family: Cottidae) in the Damariscotta River estuary, Maine. Ph. D. thesis, University of Maine
- Laroche, J. L. (1982). Trophic patterns among larvae of five species of sculpins (Family: Cottidae) in a Maine estuary. Fish. Bull. U. S. 80: 827–840
- Lee, W. Y (1975). Succession and some aspects of population dynamics of copepods in the Damariscotta River estuary, Maine. Ph. D. thesis, University of Maine
- Lee, W. Y., McAlice, B. J. (1979a). Seasonal succession and breeding cycles of three species of *Acartia* (Copepoida: Calanoida) in a Maine estuary. Estuaries 2: 228–235
- Lee, W. Y., McAlice, B. J. (1979b). Sampling variability of marine zooplankton in a tidal estuary. Estuar. coast. mar. Sci. 8: 565–582
- Legaré, J. E. H., MacLellan, D. C. (1960). A qualitative and quantitative study of the plankton of the Quoddy region in 1957 and 1958 with special reference to the food of the herring. J. Fish. Res. Bd Can. 17: 409–448
- Lillick, L. C. (1940). Phytoplankton and planktonic protozoa of the offshore waters of the Gulf of Maine. Part II. Qualitative composition of the planktonic flora. Trans. Am. Philos. Soc. 31: 193–237
- Lorenzen, C. J. (1966). A method for the continuous measurement of in-vivo chlorophyll concentration. Deep Sea Res. 13: 223–227
- McAlice, B. J. (1973). Plankton. In: Survey of the hydrography, sediments, plankton, benthos and the commercially important plants and animals including finfish, in the Montsweag Bay-Back River area. Preoperational Summary. Maine Yankee Atomic Power Co., Augusta, Maine, p. 31–78
- Platt, T., Dickie, L. M., Trites, R. W. (1970). Statistical heterogeneity of phytoplankton in a near-shore environment. J. Fish. Res. Bd Can. 32: 347–366
- Posgay, J. A., Marak, R. R. (1981). The MARMAP bongo zooplankton samplers. J. Northw. Atl. Fish. Sci. 1: 91–99
- Redfield, A. C. (1939). The history of a population of *Limacina retroversa* during its drift across the Gulf of Maine. Biol. Bull mar. biol. Lab., Woods Hole 76: 26–47
- Redfield, A. C. (1941). The effect of the circulation of water on the distribution of the Calanoid community in the Gulf of Maine. Biol. Bull. mar. biol. Lab., Woods Hole 80: 86–110

- Redfield, A. C., Beale, A. (1940). Factors determining the distribution of populations of chaetognaths in the Gulf of Maine. Biol. Bull. mar. biol. Lab., Woods Hole 79: 459–484
- Shaw, R. F. (1981). Seasonal species composition, diversity, spatial distributions, and tidal retention and transport of ichthyoplankton in the Sheepscot River-Back River-Montsweag Bay estuarine system, Maine. Ph. D. thesis, University of Maine
- Sherman, K. (1965). Seasonal and areal distribution of Gulf of Maine coastal zooplankton, 1963. ICNAF Spec. Publ. 6: 611–623
- Sherman, K. (1966). Seasonal and areal distribution of zooplankton in the coastal waters of the Gulf of Maine, 1964. U. S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 530: 1–11
- Sherman, K. (1968). Seasonal and areal distribution of zooplankton in the coastal waters of the Gulf of Maine, 1965 and 1966. U. S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 562: 1–11
- Sherman, K. (1970). Seasonal and areal distribution of zooplankton in coastal waters of the Gulf of Maine, 1967 and 1968. U. S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 594: 1–8
- Sherman, K., Perkins, H. C. (1971). Seasonal variations in the food of juvenile herring in coastal waters of Maine. Trans. Am. Fish. Soc. 100: 121–124
- Toner, R. C. (1981). Interrelationships between biological, chemical and physical variables in Mount Hope Bay, Massachusetts. Estuar. coast. Shelf Sci. 12: 701–712
- Townsend, D. W (1981). Comparative ecology and population dynamics of larval fishes and zooplankton in two hydrographically different areas on the Maine coast. Ph. D. thesis, University of Maine
- Townsend, D. W. (1983). The relations between larval fishes and zooplankton in two inshore areas of the Gulf of Maine. J. Plankton Res. 5 (2): 145–173
- Townsend, D. W., Graham, J. J (1981). Growth and age structure of larval Atlantic herring, *Clupea harengus harengus*, in the Sheepscot River estuary, Maine, as determined by daily growth increments in otoliths. Fish. Bull. U. S. 79: 123–130
- Willey, A. (1913). Notes on plankton collected across the mouth of the St. Croix River opposite to the Biological Station at St. Andrews, New Brunswick, in July and August, 1912. Proc. Zool. Soc. Lond. 1913: 283–292
- Willey, A. (1915). The plankton in St. Andrews Bay. Contr. Can. Biol. for 1911-1914: 1-9
- Yentsch, C. S., Menzel, D. W. (1963). A method for the determination of phytoplankton chlorophyll and paeophytin by fluorescence. Deep Sea Res. 10: 221–231

This paper was presented by Dr. K. Sherman; it was accepted for printing on September 9, 1983